CANCELLATION
No refunds for cancellations after March 2, 2009. There is a $50 administrative fee for cancellations made in writing before March 2, 2009. The University reserves the right to cancel the workshop if there is insufficient registration.

WORKSHOP LOCATION
UCF COLLEGE OF ENGINEERING
ENGINEERING BLDG. 2
HARRIS COMPUTER LAB
ROOM 201H, ORLANDO. FLORIDA 32816

A campus map and campus parking instructions will be emailed to registrants.

REGISTRATION
The registration fee includes instruction, course materials, refreshment breaks and lunches. Advance registration must be received by February 27, 2009. Mail the registration form within this announcement or fax your registration to (407) 882-0244. Registrations received after this date accepted on a space available basis only.

2.1 CONTINUING EDUCATION UNITS

ACCOMMODATIONS
The Radisson on 1724 Alafaya Trail has reserved a block of rooms for this workshop at a rate of $95.00 per night. To receive discount, reservations must be made by February 16, 2009. There will be complimentary transportation from the hotel to UCF.

To make you reservations please call 407-658-9008, and mention Designing Optimized Traffic Signals or online at www.radisson.com/orlandofl_university , use the code DOTSAS.

COURSE INSTRUCTOR

Dennis Strong is President of Strong Concepts, Northbrook, Illinois. The firm’s primary area of practice is in the development of integrated traffic engineering software and training. Mr. Strong’s principal area of expertise is in traffic signal control systems and in the computer software related to this field. He has over 30 years of professional experience in these areas, and is the developer of the following software used in the course: TEAPAC Complete (SIGNAL2000, NOSTOP and Export/Import functions). Mr. Strong is a registered professional engineer (PE) in Illinois, a professional Traffic Operations Engineer (PTOE), and is the past chair of the Highway Capacity sub committee for signals.

COURSE DIRECTOR

Essam Radwan is Professor and Executive Associate Dean of the College of Engineering and Computer Science at University of Central Florida. He also serves as the Executive Director of the Center for Advanced Transportation System Simulation (CATSS). Dr. Radwan has over 30 years of teaching and research experience in the field of traffic engineering. His area of expertise is computer applications in traffic operations.

COURSE SCHEDULE

Designing Optimized Traffic Signals and Systems Using TEAPAC Complete, PASSER, TRANSYT and CORSIM

<table>
<thead>
<tr>
<th>Registration</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 a.m. - 8.30 a.m.</td>
<td>8:30 a.m. - 5:00 p.m.</td>
</tr>
<tr>
<td>March 10, 2009</td>
<td>March 10-12, 2009</td>
</tr>
</tbody>
</table>

NOTICE OF NONDISCRIMINATION:
University of Central Florida is committed to a policy of nondiscrimination on the basis of race, sex, national origin, disability, religion, age, or other nonmerit reasons, in admissions, educational programs or activities and employment, all as required by applicable laws and regulations. Responsibility for coordination of compliance efforts and receipt of inquiries, including those concerning Title IX of the Education Amendment (of 1972 and Section 504 of the Rehabilitation Act of 1973, has been delegated to Janet Balaanoff, Director, Equal Opportunity/Affirmative Action Program, University of Central Florida, Orlando, Florida 32816.

SPECIAL ASSISTANCE

University of Central Florida is dedicated to making conference activities accessible to all persons. To increase our ability to assist you in finding necessary services, please contact Maria Cherjovsky, by March 2, 2009 at (407) 882-0244. There will be complimentary transportation from the hotel to UCF.

To make your reservations please call 407-658-9008, and mention Designing Optimized Traffic Signals or online at www.radisson.com/orlandofl_university , use the code DOTSAS.

REGISTRATION FORM

CANCELLATION/REFUND POLICY: Requests should be submitted in writing by March 2, 2009. A $50 Administration fee will be assessed - no refunds will be approved after the deadline.

Complete this form and return it with your payment or a copy of your Purchase Order. Questions about registration should be directed to the Division of Continuing Education, at (407) 882-0260 or fax to (407) 882-0244.

Name
Title/Position
Organization
Address
City State Zip
Work Phone Home Phone
E-Mail Address

___ Designing Optimized Traffic Signals includes 2.1 CEU’s units Fee $795
___ Register 2 or more attendees or Government Employees receive $100 off each registration Fee $695

Please indicate payment amount and method. Check for $_____ made payable to University of Central Florida. (*Print name, address, and telephone number on front of check.)

Company Purchase Order (P.O.) #

Charge the amount of $_______ to my
[] VISA [] Mastercard [] AMEX

Card # Exp. Date
Print Name on Card
Authorized Signature
Designing Optimized Traffic Signals and Systems Using TEAPAC Complete, PASSER, TRANSYT and CORSIM

March 10-12, 2009

University of Central Florida Orlando, Florida

WHO SHOULD ATTEND
This three-day concentrated course is designed to meet the needs of traffic engineers, planners and technicians developing signal timing plans for isolated intersections, arterials and networks, either for operations, design or planning studies. Instruction will be in lecture format, combined with demonstrations and actual use of computers and software. Participants should have some basic knowledge of traffic engineering.

COURSE DESCRIPTION
The goal of this short course is to provide participants with a comprehensive understanding of different signal timing methods, familiarity with a variety of software packages for these methods, and the background to select the appropriate method to solve real signal timing problems.

The course consists of lectures, numerical exercises and "hands-on" use of microcomputers. Lectures will cover the basics of timing traffic signals and realistic numerical examples. Exercise problems will supplement the lecture, and the use of selected computer software will provide participants with an opportunity to become familiar with available software.

The course will focus on terminology, method, data requirements and application software in the following areas:

I. ISOLATED INTERSECTIONS, ARTERIAL STREETS and NETWORKS. Software to be utilized in the course includes: TEAPAC Complete (SIGNAL2000, NOSTOP and Export/Import Functions), PASSER-II, TRANSYT-7F and CORSIM.

II. SIMULATION and Animation

• CORSIM Simulation and Animation
• TEAPAC Simplified Inputs and Integration
• TEAPAC/CORSIM Hands-on Exercise
• Recommended Procedures

III. Simplified Arterial Bandwidth Optimization

• Bandwidth Optimization Techniques
• TEAPAC Progression Optimization
• TEAPAC Progression Hands-on Exercise
• Recommended Procedures

IV. Complete Arterial Bandwidth Optimization

• PASSER-II Bandwidth Optimization
• TEAPAC Simplified Inputs and Integration
• TEAPAC/PASSER Hands-on Exercise
• Recommended Procedures

V. Comprehensive Arterial Optimization, Simulation and Animation

• Limitations of Bandwidth Methods
• TRANSYT-7F Simulation and Optimization
• TEAPAC Simplified Inputs and Integration
• TEAPAC/TRANSYT Hands-on Exercise
• Recommended Procedures

VI. Special Optimization Situations

• Diamond Interchange Optimization with TEAPAC and TRANSYT
• Non-arterial and Grid Systems
• Actuated Signals
• Double-cycled Signals
• Recommended Procedures

VII. Summary and Course Evaluation

Participants will receive certificates of participation indicating the number of contact hours completed.

I. Introduction
• Using TEAPAC Complete

II. Timing Individual Intersections
• 2000 HCM Capacity Analysis
• TEAPAC Timing and Phasing Optimization
• TEAPAC Signal Analysis Hands-on Exercise
• Recommended Procedures

III. Simulation and Animation
• CORSIM Simulation and Animation
• TEAPAC Simplified Inputs and Integration
• TEAPAC/CORSIM Hands-on Exercise
• Recommended Procedures

IV. Simplified Arterial Bandwidth Optimization

• Bandwidth Optimization Techniques
• TEAPAC Progression Optimization
• TEAPAC Progression Hands-on Exercise
• Recommended Procedures

V. Complete Arterial Bandwidth Optimization

• PASSER-II Bandwidth Optimization
• TEAPAC Simplified Inputs and Integration
• TEAPAC/PASSER Hands-on Exercise
• Recommended Procedures

VI. Comprehensive Arterial Optimization, Simulation and Animation

• Limitations of Bandwidth Methods
• TRANSYT-7F Simulation and Optimization
• TEAPAC Simplified Inputs and Integration
• TEAPAC/TRANSYT Hands-on Exercise
• Recommended Procedures

VII. Special Optimization Situations

• Diamond Interchange Optimization with TEAPAC and TRANSYT
• Non-arterial and Grid Systems
• Actuated Signals
• Double-cycled Signals
• Recommended Procedures

VIII. Summary and Course Evaluation